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� NREL Mission 
� Lead the nation toward a sustainable energy future by 

developing renewable energy technologies, improving energy 
efficiency, advancing related science and engineering, and 
facilitating commercialization 

� Established in 1977 as Solar Energy Research Institute 
(Achieved National Laboratory status in 1992) 

� One of eleven DOE National Laboratories 

� Current staff of approximately 780 

� Estimated operating budget of $188M for FY00 
� Located in Golden, Colorado, USA (15 miles west of Denver) 

National Renewable 
Energy Laboratory (NREL) 
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Vehicle Auxiliary 
Load Reduction 

Battery Thermal 
Management 

Vehicle Systems AnalysisVehicle Systems Analysis 

Hybrid Electric Vehicle Program at NREL 
Involves 3 Main Areas of Emphasis 

Big 3 PartnershipBig 3 Partnership 
 PNGV -> 55 mpg > 80 mpg PNGV -> 55 mpg > 80 mpg 

Multi-Platform, Multi-Platform, FreedomCARFreedomCAR 

GMGMFordFordDaimlerChryslerDaimlerChrysler 

ADVISOR Digital Functional Vehicle 
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DOE & Digital Functional Vehicle Objectives 

• DOE: 

– Decrease petroleum consumption and 
emissions of light-duty vehicle transportation 
while maintaining safety and affordability 

• DFV: 

– Enable and accelerate new fuel efficiency 
technologies (HEV, Fuel Cells, Manufacturing) 
by removing technical barriers 

– Investigate, develop and implement 
lightweight design processes for achieving 
improved fuel economy in high volume 
production vehicles 
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Key working strategies to achieve DFV objectives 

• Work with industry to identify projects with energy 
savings potential 

• Focus on math-based processes in ALL phases of the 
design process (Conceptual -> CAD -> CAE -> 
Manufacturing) 

• Utilization of innovative design processes that lead to 
efficient load path generation (topology optimization, 
behavioral modeling, etc) 

• Ultra lightweight designs that achieve the desired quality 
level (i.e. 6σ) via probabilistic modeling of variations 

• Utilization of multi-physics optimization to impact, 
enable and accelerate the implementation of new fuel 
efficiency technologies 

• Technology Transfer to automotive industry 



A collection of integrated software modeling tools and processes 
that enable the evaluation, design & optimization of new energy-
saving automotive technologies such as HEVs and Fuel Cells. 
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Digital Functional Vehicle Accomplishments

Projected Transportation Oil Use
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Rapid Development of FORD Think-mobility NEV 

• Suspension Design Process 
– Space Claim Envelop 

– Optimization of Suspension Characteristic 

• Chassis Design Process 
– Multi-Functional Attribute Balancing 

– Topology Optimization 

Fuel Cell weight 
redistribution may have 
significant impact on 
safety 
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Body-in-White Weight Reduction via Probabilistic 
Modeling of Manufacturing Variations 

•Probabilistic Durability 
Modeling of Manufacturing 
Variations coupled with 
optimization can avoid over-
design, reduce component 
weight by 17% and achieve 
six-sigma quality levels 
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Robust Optimization for Weight Reduction & 6σσσσ Quality (Workflow)
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Workflow for Reliability Based Optimization within 
Pro/Engineer using ANSYS PDS 

Behavioral Modeling 

Pro-Engineer 

ANSYS PDS 

Pro-Mesh 

Solid Model Feature 1 

Analysis Feature 

Generate Parameters 
from Response 

Variables 

Solid Model Feature 2 

Create 
Loads and BC 

Create ANSYS input 
files 

Establish Random 
Variables and 

Perform Probabilistic 
Analysis 

Compute Mean & 
Standard Deviation of 
Response Variables 

Optimization 
Feature 

Establish Design 
Variables, Reliability 

Constraints and 
Perform Optimization 
to Compute Optimum 
Response Variables 

Optimization Loop 

• When a Designer makes a change (i.e. hole 
diameter) the component thickness updates 
automatically to meet desired quality criteria 
and minimize weight 

FE Mesh, 
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• Automatic, No Manual
iteration:
 CAD -> Meshing -> FEA

• Probabilistic Design
Loop

• Optimization Loop with
reliability constraints

Workflow

Modeling Variation of Fuel
Cells in:
• Manufacturing (t, w, h)
• Material Properties(E,K,p)
• Degradation in time
• Loading Conditions(T,P)



Advanced Engineering Environment 
for Tire Modeling at NREL 

NREL Parametric 
Tire Data 

(Geometric, Material, 
Loading, Modeling) Parametric Solid Model 

FEA Model 

Execution at ORNL 
SupercomputerFEA Results 

DOE 

Optimization 
Enrich -

Data Base 

3600 CPU hours 

Selection of key design parameters that are most 
influential to Fuel Cell attributes & use of optimization 
algorithms to derive best choice of design parameters 



 SYSTEMS 

Enabling Light Weight Aluminum Auto Body 
technology by removing the safety barrier 

Foam filled 

Modular Aluminum Components 
Partially Filled 
with Structural Foam can 
achieve crashworthiness 
equivalent to steel structures. 
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Bending Moment Strength 

Whole filling Partial filling 
(Outer side) 

Effective Collaboration Model: 
NREL’s Simulation capabilities and 
partners experimental validation 
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Process for Battery Thermal Analysis 

Thermal modeling & management improves 
performance of HEV’s battery pack. 

Used NREL’s unique analysis and testing 
capabilities determine the thermal 
performance and cooling requirements 

ADVISOR predicts thermal loading for a 
realistic drive cycle 

Transient thermal FEA predicts transient 
temperature response over the drive cycle 



Liquid Cooled Design Meets the Max Target 

target 

Similar requirements and thermal analysis 
process may apply for fuel cell stacks 



Dissemination of DFV Techniques 
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Digital Functional Vehicle Accomplishments

Projected Transportation Oil Use
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Conceptual Design Fuel Cells 

• Conceptual Design Optimization 
of the fuel cell power systems 

– Identify the components and their 
function of a fuel cell power system 

– Perform TRIZ Functional Analysis 
based on the Theory of Inventive 
Problem Solving 

– Utilize the TRIZ technical knowledge 
base 

– Generate a set of recommendations 
for making the system simpler and 
optimal 
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Automotive Integrated Power Modules (AIPM) 

Critical enabling technology 
for commercialization of HEV 
& Fuel Cell powered vehicles 
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Automotive Integrated Power Modules 
(AIPM) 

Technical Challenges for AIPM 

• Cost 

• Reliability and Robustness 

• Packaging, Volume & Weight 

• Thermal Management 
• Current thermal management techniques are inadequate 

to dissipate heat in high-power-density systems 

• Innovative Thermal Management Techniques for Fuel 
Cell Vehicle Traction Inverter Module 

Critical enabling technology 
for commercialization of HEV 
& Fuel Cell powered vehicles 



NREL, CENTER FOR TRANSPORTATION TECHNOLOGIES AND SYSTEMS

Innovative Thermal Management Techniques
for Fuel Cells

• Uniform cooling is necessary to avoid
material degradation and premature failure

• Need for a novel heat exchanger to
efficiently remove heat from  
reject it into the vehicles coolant loop with
minimum cost, volume and pressure drop

• NREL’s experimental and Multi-Physics
simulation capabilities ideal for design
optimization of AIPM and fuel cell cooling
plates
– TRIZ, CAD, structural, thermal, CFD, Durability,

DOE, Probabilistic Design, Multi-disciplinary
optimization

AIPM and
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Multi-Physics Simulation Techniques

• Reduction of inverter parasitic inductance
necessary to develop an energy efficient
AIPM

• Low stray inductance required to minimize
electrical and mechanical stress on
semiconductor devices

• Investigate, develop and implement
Electromagnetic FEA based techniques to
evaluate inverter parasitic inductance

• Selection of key design parameters that
are most influential to parasitic inductance
& use of optimization algorithms to derive
best choice of design parameters (AEE)
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Reliability and Robustness
of Fuel Cells for Automotive Environments

• Existing electric machinery is not rugged enough
for the harsh automotive environment

• Failure under a repeated load which never
reaches a level sufficient to cause failure in a
single application

• Techniques for predicting the durability of
proposed Traction Inverter Modules by means of
a "digital prototype" simulation
– Solder joint reliability

– Electrolytic capacitors

– Power electronic assemblies

• Fuel Cell Stack Durability
– Degradation Mechanisms (mechanical, chemical, etc.)

– Failure mechanisms (layer delamination, membrane
holes, etc.)
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Cabin Comfort & FC 

• Conceptual Cabin & FC System 
Thermal & Water Management 

• Goals 
– Increase stack efficiency & fuel 

economy, lower cost 

– Reduced auxiliary loads 

• Tools & Techniques 
– Thermal Comfort 

– Heat-generated cooling 

– Air compressors 

– Thermal Damper 

Cabin 

FC StackInter-
cooler 

Air Compressor 
H2 in 

Air in Air out 
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Local Fuel Cell Measurements 
Future Work 
• Objective 

– Model validation 

– Improved cathode flow field design 

• Spatial & temporal measurement of FC 
– Gaseous concentrations, velocities & temperatures 

– Liquid water transport 

– Flow visualization 

• Requires at least partially transparent bipolar plates 

• High demand 

Partially Transparent 
Bipolar plate 

Operating Fuel Cell 

(MEA) 

Airflow 

Laser 
Diagnostics 
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• Improve fuel cell performance & reduce required 
airflow 
– Increase exchange rate of air and water at cathode 

• Techniques 
– Pulsating airflow 

period and amplitude 

– Acoustic excitation 
• Resonant vortex amplification 
• Resonant channel 

– Vortex/surface 
interaction dynamics 

Reduce Required FC Air Flow 
Future Work 
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Early Design Insights with Digital Functional Vehicle 

• Integrating digital prototyping and optimization 
techniques across multiple disciplines in research 
and development process can: 
– Evaluate the feasibility of a potential new design without 

physical prototypes 

– Improve quality while achieving multi-attribute goals 

– Reduce development costs and time 

– Improve coordination of physical test and measurement 

– Enable and accelerate new technologies by removing 
technical barriers 
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Background on ADVISOR 

• ADVISOR = ADvanced VehIcle SimulatOR 
– simulates conventional, electric, or hybrid vehicles (series, 

parallel, or fuel cell) 

• ADVISOR was created in 1994 to support DOE Hybrid 
Program at NREL 

• Released on vehicle systems 

analysis web site for free 

download in September, 1998 

(www.nrel.gov/transportation/analysis)(www.nrel.gov/transportation/analysis) 

• Downloaded by over 4500 people around world 

• Users help provide component data and validation, 
feedback for future development 

• Have held 2 User Conferences in last two years 
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2/3 of Users are from Industry, 
All Major Auto OEMs & Suppliers 
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Three Main GUI Screens (Roadmap) 

Vehicle InputVehicle Input 

Simulation SetupSimulation Setup 

ResultsResults 
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ADVISOR Demonstration 
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Basic Structure (models) 

BlockBlock 
DiagramDiagram 

LibrariesLibraries 

BatteryBattery 

EngineEngine 
ControlControl 
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Basic Structure (database) 

BlockBlock 
DiagramDiagram 

GUIGUI 

Data FilesData Files 



Vehicle Input Screen 



Simulation Setup Screen 



Cycle Results Screen 
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“Test Procedures” Currently Available 

‘Test procedures’ save work 
and automate details of 

cold-start, bag weightings, etc. 
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Fast Execution Time Enables Parametric 
Runs to Be Quickly Executed: 2D and 3D 

Fuel economy, emissions,Fuel economy, emissions, 
acceleration times, or achievedacceleration times, or achieved 
grade as a function of your chosengrade as a function of your chosen 
variables can be displayedvariables can be displayed 

2 Variable Parametric Study2 Variable Parametric Study 

3 Variable Parametric Study3 Variable Parametric Study 
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Fuel Cell Vehicle Design Optimization 
Areas of Exploration 

• Optimization Algorithms 
– efficiency of gradient and derivative-

free algorithms 
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• Drive Cycle Impacts 
– Vehicle optimization for a drive cycle 

– Assessment of robustness of vehicle 
design 

• Fuel Cell Systems Characteristics 
Impacts 
– Component characteristics drive 

system design 
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Example of Applying Optimization Techniques 
Fuel Cell Hybrid SUV 

• Objective: Maximize fuel economy of Fuel Cell Hybrid SUV 

• Optimizing coupled problem of sizing and control strategy leads to 

improved solution 

•• Multiple local optimums in HEV design spaceMultiple local optimums in HEV design space 

Traditional: local Non-traditional: global 
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Fuel Consumption vs. Function Evaluations --
Only DIRECT Does Not Get ‘Stuck’
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Complex Design Space of HEVs 
Fuel Economy vs. 2 energy management parameters 

• Note:This only represents small portion (~1/25th) of 2 dimensions of an 8 dimensional space 
• We are actually now doing parametric sweeps of these optimization problems (~3000 calls/per point) 
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Drive Cycle Variation
5 cycles Investigated (US city/highway are combined)

US city/highway combined cycle

American US06 Japanese 10-15 mode European NEDC
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Results: Drive Cycle Investigation 
(D = vehicle designed for this cycle) 
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Characteristics of Components for 
Optimized Vehicles 
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Cycle Operating Characteristics on the 4 Cycles 

Significant 
Load Following 
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Fuel Cell System Transient Response 
Study 

• Vary the power response characteristics of the fuel 
cell system 
– 10-90% power in 0, 2, 5, 10, 20, and 40s 

• Derived optimal vehicle configuration scenarios 
(component sizes and control strategy params) 
– Fuel cell hybrid vehicle 

– Neat fuel cell vehicle 

– Multiple drive cycles 
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Comparison of Hybrid, Neat, and 
Conventional Vehicles 
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• Coarse parametric sizing study 
indicated optimal fuel cell to system 
power ratio of 0.25-0.3 for fuel 
economy 

Optimization of Fuel Cell Vehicle Design 
Provides Insight into System Trade-offs 

• Determined that derivative-free 
optimization algorithms necessary 
for complex design space of HEVs 

• Drive cycle influences optimal 
degree of hybridization and control 
parameters 
– NEDC provides robust design 

• Fuel cell transient response 
capability critical for neat fuel cell 
vehicle 

• An optimized hybrid design can 
nullify the effects of fuel cell 
transient response 
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Key Industry Partners Involved 

Collaboration will help identify applicability andCollaboration will help identify applicability and 
systems issues early in the R&D process.systems issues early in the R&D process. 
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Draw Upon All Available Sources to 
Gather Data and and New Models 
NREL, ORNL, ANL, Ford, GM, DaimlerChrysler, Delphi, Visteon, etc. 
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Power of DOE 
modeling approach is 

application of data 
and models! 

++++++++ OptimizationOptimization 


